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Overview

• What’s new ?

• System overview
– Architecture

– Acoustic preprocessing

– Acoustic and language models

• Improvements in IHM recognition

• Improvements in distant mic recognition• Improvements in distant mic recognition

• Speaker-attributed recognition

• CALO-MA: meeting recognition in the wild
– Live recognition

– Partially supervised LM adaptation

• Summary and conclusions
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What’s New?

• Very limited effort for RT-09 (2 person-weeks)
– No new training data processed

– Focus on better segmentation and speaker clustering

– Heavy use of system combination (CPU cores are so cheap now …)

• Some acoustic modeling work for IHM
– Utilized alternative acoustic model set in system combination

– Tried to incorporate bandwidth mapping (Karafiat ’08) – but failed– Tried to incorporate bandwidth mapping (Karafiat ’08) – but failed

• Same SDM/MDM models as in RT-07

• Use of diarization for SDM/MDM

• First-time official SASTT submission
– Error model

• CALO real-time, live ASR system
– Not evaluated in RT-09
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This Year’s Challenge

Test set difficulty
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2007 2009

Time, funding
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Acoustic Preprocessing

• IHM
– HMM speech/nonspeech segmentation and cross-talk suppression with 

augmented cross-channel energy features (Boakye & Stolcke, 2006)

• MDM, MM3A
1. Per-channel noise reduction with ICSI-Qualcomm Aurora Wiener filter

2. Delay-sum processing with Xavi Anguera’s BeamformIt 2.0 (same as in ‘07)

3. HMM segmentation3. HMM segmentation

4. Bottom-up pseudo-speaker clustering based on GMM mixture weights

OR

3.’ Speech/nonspeech from ICSI diarization system (plus merging/padding)

4.’ Speaker clusters from ICSI diarization system

• SDM
– Same as MDM, without beamforming
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Basic Decoding Architecture
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Runtime versus Accuracy

• No Gaussian shortlists, no speed tuning in eval system

• Runtimes taken on Intel 3.0 GHz, 2x4-core CPUs

• Results for RT-09 IHM data:

System Decoding 
passes

WER Runtime

• Runtime for RT09 MDM data: 7.5 xRT
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One-stage (includes segmentation) 1 32.1 0.9 xRT

Two-stage 2 28.0 1.2 xRT

Multi-stage (see diagram) 8 27.3 3.3 xRT

2 x multi-stage, combined 16 25.5 6.4 xRT



Meeting Datasets

• Development: eval06, eval07 (confmtg data only)

• Testing: eval09

• Meeting training data (same as for RT-07)
– AMI (170 meetings, 100 hours)

– CMU (17 meetings, 11 hours) – Lapel personal mics, no distant mics

– ICSI (73 meetings, 74 hours)

– NIST (27 meetings, 28 hours) – did not process newly released data
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– NIST (27 meetings, 28 hours) – did not process newly released data

• Acoustic background training data (same as for RT-07)
– CTS (Switchboard + Fisher, 2300 hours)

– BN (Hub-4 + TDT2 + TDT4, 900 hours)



Acoustic Models (from RT-07)

• Two sets of models chosen for complementary 

strengths, effective system combination

• MFCC + MLP models
– Telephone front end (8kHz sampling)

– Adapted from CTS baseline models

– Gender dependent

– ICSI phone-posterior features appended, estimated by multi-layer perceptron– ICSI phone-posterior features appended, estimated by multi-layer perceptron

• PLP models
– Full-band front end (16kHz sampling)

– Adapted from Broadcast baseline models

– Gender independent

• Training procedure
– ML-MAP estimation on meeting data, from MPE background models

– fMPE-MAP feature transform estimation (Zheng & Stolcke, 2007)

– MPE-MAP adaptation
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Language Models (from RT-07)
• Linearly interpolated mixture N-gram LMs

– Different N-gram orders for different decoding stages

– Perplexity optimized on held-out data (AMI, CMU, ICSI, NIST) 

– Final LMs entropy-pruned

– Vocabulary: 54k words

• Conference meeting LM components
– Switchboard + Fisher CTS (30M words)
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– Switchboard + Fisher CTS (30M words)

– Hub4 and TDT4 BN transcripts (140M)

– AMI, CMU, ICSI, and NIST meeting transcripts (2M)

– Web data selected to match Fisher (530M) and meeting (382M) transcripts



Updated IHM Segmentation

• Raised prior probability for speech detection

• Augmented cross-channel energy features
– Old: min and max of differences in normalized log energies b/w channels

– New: added mean and range of log energy differences

• Revised training data and model configuration
– Using all 2007 training data (added AMI training data); realigned references

– Increased number of Gaussians per model (from 512 to 2048)– Increased number of Gaussians per model (from 512 to 2048)

• Results using 2-pass IHM system, eval07 data:
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Segmentation WER

Baseline (RT07 auto segmentation) 30.4

+ retuned speech prior (post-RT07) 28.9

+ augmented x-channel features 28.4

+ revised training configuration 28.1

Reference segmentation 27.3



Expanded IHM Model Combination

• Old IHM acoustic models
– MFCC: CTS-based, fMPE-MAP feature transforms + MPE-MAP training

– PLP: BN-based, fMPE-MAP feature transforms + MPE-MAP training

• Alternate acoustic models (trained for CALO system)
– No fMPE transforms, only MPE training (for speed)

– PLP models CTS-based (because of limited bandwidth)

– Non-native CTS speakers used in base models (instead of in MAP adaptation)

• Model combination very effective on auto segmentation
– 1.8% absolute gain over old models (only 0.3% on reference segments)

– 1.7% absolute gap between reference and auto segments

– IHM test data is getting progressively harder each year …
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eval06 eval07 eval09 eval09-refseg

Old models 20.1 23.3 27.3 24.1

New models 20.1 23.7 29.0 25.3

System combination 19.4 22.8 25.5 23.8

Submitted results



Diarization for STT

• In past years, we were never able to get a gain from 

using diarization in STT preprocessing

• Our “standard” approach:
– HMM speech/nonspeech segmentation

– Bottom-up clustering into 4 pseudo-speakers per meeting

• Found in post-RT07 work: gains from combining • Found in post-RT07 work: gains from combining 

subsystem based on different speaker clusterings

• Cambridge U.: broadcast recognition benefits from 

combining alternate segmentations

• New approach:
– Make diarization segmentations and clustering work for STT

– Combine with standard approach
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Diarization for STT (continued)

• Developed based on ICSI SPKR system

• Speech segments are merged, padded, and filtered
– Parameters tuned on eval06 MDM 

– Merge segments by same speaker, separated by less than 0.4s nonspeech

– Add 0.2s nonspeech around each segment

– Remaining segments shorter than 0.2 s are discarded

• Diarization speaker clusters used for VTLN, cepstral 

normalization, and MLLRnormalization, and MLLR

• Results with overlap=1
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eval06 
MDM

eval06
SDM

eval07 
MDM

eval07 
SDM

Standard (seg + cluster) 30.3 40.6 26.2 33.1

Diarization seg + std clustering 29.5 40.8 26.4 33.1

Diarization (seg + clustering) 29.3 39.3 25.9 32.5



Combining Multiple Segmentations and 
Speaker Clusterings

• Combine standard and diarization-based systems

• Baseline approach:  NIST ROVER on 1-best outputs
– Voting based on word confidences

– Works even though input systems use different segmentations

• Better approach: Confusion network combination
– Resegment hypotheses at gaps agreed upon by both systems

Seg A                 ____    _____     __   ____   ___    ___     ___    __________Seg A                 ____    _____     __   ____   ___    ___     ___    __________

Seg B                    ___   _____         ______  ______          ________    ___   _____

Consensus        ___________     _________________     ____________________

– Concatenate, then combine confusion networks according to consensus segs
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System eval07 MDM eval07 SDM eval09 MDM eval09 SDM

Standard 26.2/40.5 33.1/45.2 34.0/42.9 41.3/49.9

ROVER-combination 25.0/37.5 31.9/43.8 34.2/43.8 42.2/51.1

CN combination 24.9/37.4 31.3/43.6 33.3/43.0 40.8/50.1

Results for overlap=1/overlap=4 Primary submission
Contrast (late) submission



Effect of Diarization Quality 

• Diarization-based STT worked well on eval07, but was 

a loss on eval09

• STT seems to degrade as a function of diarization error

• CN combination with standard system fairly robust

• Tried additional diarization systems (thanks!) with STT
– Segment smoothing parameters were NOT retuned– Segment smoothing parameters were NOT retuned
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Segmentation / 
clustering

eval09 MDM eval09 SDM

DER WER DER WER

Standard n/a 34.0/42.9 n/a 41.3/49.9

ICSI diarization 17.2 35.9/43.9 31.3 44.6/51.6

IIR/NTU diarization 9.2 34.7/43.4 16.0 40.9/49.4

Standard + IIR/NTU n/a 32.7/41.5 n/a 40.0/48.8

WERs for overlap=1/overlap=4



A Shot at Overlapping Speech

• If diarization could detect overlapping speakers …

• STT could potentially  recognize overlapping speech 
aided by

– Speaker-specific LM contexts

– Acoustic models adapted to speakers’ non-overlapping speech

• Quick experiment with AMI diarization system that 
explicitly labels overlapping speakersexplicitly labels overlapping speakers

• With MDM, we could explore beamforming speaker-
specific delay estimates
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Segmentation / clustering eval09 SDM

Standard 41.3/49.9

AMI diarization w/o overlap 41.9/50.2

AMI diarization with overlap 41.9/50.2

WERs for overlap=1/overlap=4



MM3A Results

• MM3A data processed the same as MDM

• No special tuning performed

• Blind beamforming on all channels

Segmentation / clustering Signal eval09 WER

Standard Delay-sum 43.0/56.2

• Surprise: diarization helped in spite of high DER

• Surprise: single array mic better than delay-sum
– Need to sanity-check beamformer
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Based on ICSI diarization (DER = 28.3) Delay-sum 42.8/55.2

ROVER combination Delay-sum 42.1/54.9

Standard Single mic 39.4/53.9

WERs for overlap=1/overlap=4 Primary submission



Speaker-attributed STT

• Script merges STT CTM and SPKR RTTM output by assigning 
speaker label to each recognized word

– Chose longest overlapping speaker if speaker change falls within a word

– If word falls outside speech region detected by diarization, assign most recent 

speaker label

– Developed by Chuck Wooters post-RT07

Diarization eval09 eval09 
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Diarization
system

eval09 
MDM

eval09 
SDM

ROVER combination ICSI 38.2/47.7 53.6/60.9

CN combination ICSI 37.7/47.3 52.7/60.3

CN combination IIR-NTU 33.6/42.8 43.3/53.1

SASTT errors for overlap=1/overlap=3

Primary

submissions

Contrast (late)

submissions



SASTT Error Model

• Do SASTT errors behave as expected?

• Assuming SPKR and STT errors are independent, we 

can predict SASTT word error rate as

WERSASTT = WERSTT + CorRSTT x (MESPKR+SESPKR)

where

WER is word error rateWERSTT is word error rate

CorRSTT is word correct rate 

MESPKR is speech miss error rate

SESPKR is speaker labeling error rate 
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SASTT Error Model Results

• eval09 system, IIR/NTU diarization, overlap = 1

Error metric MDM SDM

STT WER / WCorR 32.7 / 70.0 40.0 / 62.4

Diarization ER / ME / SE 3.8 / 0.7 / 1.2 10.7 / 0.7 / 8.2

SASTT WER predicted 34.0 45.6

SASTT WER actual 33.6 43.3

• Prediction works very well for MDM, okay for SDM 

(found similar results on RT07 outputs)

• SASTT error is over-estimated 

• Suggests that STT and SPKR errors are correlated 

(conditions leading to poor ASR also cause problems 

for diarization)
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SASTT WER actual 33.6 43.3



CALO Meeting Assistant 
Meeting Recognition and Understanding

Gaze & 
Gesture

(close-up video)

Shared artifact 
(digital paper)

Meeting Applications
 - Auto-login

 - Shared notes & sketches
 - Action items & topics browser
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• Both live and batch mode recognition systems

– Live output used for providing information to the user on the fly

– Batch mode used for providing rich transcript of previous 
meetings

• System is adaptive: improves with use

Remote sitesFirewall & proxies configured to support 

CALO services, NAT’d clients, etc.

Servers 
(SRI Menlo Park)



CALO Meeting Browser 
Meeting review interface



CALO-MA Recognition

Batch recognizer
• RT-07 decoding structure (minus 

1 decoding pass that gives little 

gain)

• CTS-based acoustic models  (to 

deal with bandwidth limitation)

• Gaussian shortlists

Live recognizer
• Recognizes utterances as soon 

as they are endpointed

• Causal VTLN and cepstral 

normalization

• Causal MLLR (background 

process updates acoustic models • Gaussian shortlists

• Runtime: 1.7xRT on 3GHz, 2x4-

core CPU

process updates acoustic models 

periodically)

• Gender-indep. PLP acoustic 

models

• Pruned trigram LM

• 1-pass decoding

• Run-time: ~ 1xRT on 1CPU core

• Latency: ~ 5 - 15 seconds
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CALO-MA Live STT Architecture
Live  

audio 
stream

Segmenter

Feature 
normalization & 

computation

• Performs online segmentation

• Based on SRI DynaSpeaker recognizer

Queue of MSWAV segments

Queue of  feature files

• Periodically recomputes VTL and cepstral

statistics from all waveforms seen so far

Adaptation 
(optional)

Recognizer #2 
(optional)Recognizer #1

Output

5/28/200926

Queue of features files & model updates

Queue of timestamped hyps

• Uses gender-independent acoustic model
• Decoding with pruned trigram 
• Optional 2nd recognizer instance per speaker

• Periodically adapts acoustic models (MLLR)Alignments

for improved

cepstral stats



CALO-MA Recognition Performance

• Live recognition accuracy suffers from three factors

– Simpler models and algorithms

– On-line cepstral normalization

– On-line segmentation

• Results on Sept. 2006 CALO-MA IHM data
– Difficulty comparable to NIST eval sets

WER
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WER

Batch system 26.0

1-pass batch system 32.5

Live system w/batch segmentation 39.6

Live system w/live segmentation 40.9

+ online adaptation 39.7



Exploiting User Feedback: 
(Semi)-Supervised LM Adaptation

• Principal idea: 
– Give the user the option to make corrections to ASR output 

from previous meetings

– System can learn from user feedback:

Use the (partially) corrected output to adapt the LM used for 
follow up meeting sequences

• Why would users provide corrections?
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• Why would users provide corrections?
– Users typically look at the output in order to remember 

details/prepare for following meeting

– May be motivated to make corrections to improve readability

– More motivated to fix errors in transcription of their own 
speech (which is seen by other users)

– Partial corrections are more probable, typically covering 
important/content words

• For details see Vergyri et al., ICASSP ‘09



Simulated User Feedback:
Partial Corrections

• Assume users correct most frequent/important content 

word errors.

• Assume users DO NOT correct spurious function (or 

stop) word errors UNLESS they are part of a larger 

sequence of errors.

– E.g.: “joined kayla project” (errorful region)
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– E.g.: “joined kayla project” (errorful region)

“join the calo project” (corrected)

– Function word the is also restored 

• Simulate various levels of correction effort

– Randomly choose error regions to correct

– Vary percentage of errors fixed



Experimental Setup

• Collected 8 sequences of meetings

– Each sequence contains up to 5 meetings

– Total of 35 meetings: ~32K words

– Each sequence contains meetings on the same topic (e.g., 
hiring new staff)

– 10 speakers in total, re-occurring across meetings
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• Evaluated system improvements using across-

sequence LM adaptation

– Train LM on sequences 1-4

– Tune weights on sequences 5-6

– Test on sequences 7-8

– Compared different adaptation methods, for unsupervised 
semi-supervised and fully supervised adaptation



Results with Varying Degrees of 
Feedback

• All results with linearly interpolated adapted model

• WER looks at all word errors. For semantic processing (IR, MT, 
summarization),content words are more important.

• The goal of user feedback is to fix as many content words as 
possible: look at content-WER (cWER) vs function-WER (fWER)

% total words 

corrected

% cont.  words 

corrected

% WER %cWER %fWER
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corrected corrected (rel. improv.) (rel. improv)

0 (no-adapt) 0 (no-adapt) 16.1 12.0 19.4

0 (unsup) 0 (unsup) 15.4 11.3    (6%) 18.5   (4.6%)

15 25 15.0  10.8  (10%) 18.3   (5.7%)

30 50 14.7 10.4  (13%) 18.0   (7.2%)

55 100 14.0 9.4  (22%) 17.6   (9.3%)

100 (sup) 100 (sup) 14.0 9.4 17.5  (10.3%)



Summary & Conclusions (1)
• IHM: significant gains from improved segmentation

• IHM: modest gains from additional acoustic models 
and expanded system combination

• MDM/SDM:  now using diarization system 
segmentation and speaker labels

– Gains on eval07, and eval09 as long as diarization is sufficiently accurate

– System combination with standard system give additional gains

– Especially with hypothesis resegmentation and confusion network combination– Especially with hypothesis resegmentation and confusion network combination

• Significant improvements in all conditions masked by 
increasing difficulty of test data (last 3 evaluations)

• SASTT error model
– Predicts SASTT error well based on diarization and STT error stats

• Future work: recognize overlapped speech
– Need diarization that labels overlapping speech!

– Run cheating experiment using reference diarization
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Summary & Conclusions (2)

• CALO Meeting Assistant
– Real-time live recognition and

– Batch-mode post-meeting recognition

– Semantic recognition: dialog acts, question/answer pairs, action items

• Partially supervised adaptation based on user 

feedback
– Correcting about 50% of the errors (all content word errors) we achieve the – Correcting about 50% of the errors (all content word errors) we achieve the 

same result as with fully supervised adaptation. 

– By correcting on 30% of the errors (focusing on content words) we achieve 

half the maximum improvement

• Future work
– Incremental, unsupervised or partially supervised acoustic adaptation

– Unsupervised LM adaptation with web data

– Evaluate live recognizer using NIST evaluation data and framework

May 28, 2008NIST RT-09 Evaluation Workshop 33



Thank You!


